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The 3D reconstruction of freedom surface has been a major challenge for computer vision as well as metrology. 
Complex surface structures such as large undulations and deep grooves, along with surface reflection properties 
like high dynamic range (HDR) pose many difficulties for 3D reconstruction. Shape from focus (SFF) is 
widely studied for its low cost, ease of deployment, and effectively avoiding occlusion. However, its inherent 
disadvantages, such as inaccuracy and sensitivity to noise, cannot be ignored. This article demonstrates an 
improved depth map optimization method to solve these problems. Firstly, a more comprehensive and reliable 
depth recovery evaluation method is proposed. Then an efficient optimization algorithm is applied to the filtered 
depth maps. Comparable experiments confirm our method’s effective suppression of noise and the reliable 
compensation of missing signals when measuring freedom surfaces.
1. Introduction

3D topography recovery of freedom surface has many applications, 
including aerospace, medical devices, intelligent manufacturing, her-

itage archaeology, etc. [1,2]. SFF is a type of shape reconstruction 
method that utilizes focus cues from the scene. With few application 
restrictions, SFF is a credible alternative to 3D reconstruction in vari-

ous scenes [3–6], especially in microscopic scenes, which are naturally 
rich in texture information. What’s more, SFF faces less occlusion com-

pared to triangulation when measuring undulating surfaces.

To recover a surface profile with SFF, a set of differently focused 
images usually called an image sequence is captured. With a suitable 
focus measure operator (FMO), the volume of focus (FV) can be deter-

mined, which contains the sharpness of each pixel. And then depth can 
be estimated by fitting the FV pixel by pixel [7–9].

To date, many improved SFF techniques have been proposed to re-

cover high-quality 3D topography. These can be divided into three main 
categories as follows: (i) improvement of FV, (ii) reduction of time-

consuming, and (iii) optimization of the depth map.

For the first category, one of the common means is to select a suit-

able neighborhood for the FMO. Lee et al. [10] adopted adaptive win-

dows to decide the neighborhood, while Saxena et al. [11] employed a 
nested window, and Shim [12] further extended the search to 3D space. 

* Corresponding author at: College of Computer Science, Sichuan University, Chengdu 610065, China.

Additionally, Nayar projected a chessboard grid pattern to solve focus 
ambiguity in textureless regions [13]. Mutahira et al. [14] mathemati-

cally modeled jitter noise and used recursive least squares to remove it, 
and Zhou et al. proposed a dual camera schema to improve the depth 
of field and measurement accuracy [15].

To reduce time consumption, studies have been conducted from 
both the hardware platform and the algorithmic perspectives. In terms 
of hardware-level improvements, Gladines et al. combined SFF with 
fringe projection profilometry (FPP) to reduce measurement time [16], 
and Haessig et al. [17] used event-based silicon retinas and neural pro-

cessing devices to speed up SFF image processing. While in terms of 
algorithm-level optimization, one is to reduce the number of images re-

quired by solving the constrained Gaussian equation of focus [18–21]. 
Instead, Tseng et al. [22] utilized maximum a posteriori (MAP) to re-

duce the image volumes. In recent years, the emergence of deep learn-

ing has made the recovery of depth from a single image a hot research 
topic [23–29]. He et al. improved the accuracy of the VGG model by 
adding focus length to the dataset [30]. Regretfully, the current appli-

cations of deep learning are mainly dedicated to large scenes, instead 
of a single object.

Optimization of the depth map can be divided into two steps. The 
first is guided filtering of the depth map and the next step is the op-

timization of the depth map. Existing evaluations are based on the 
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Fig. 1. The workflow overview.
statistical properties of the fitted focusing curve. For example, [31]

evaluated the reliability of the fit by the Kolmogorov–Smirnov test. Ali 
et al. compared different guided maps in [32] and proposed to gen-

erate a guided map through the symmetric correlation of the focusing 
curve [33]. Furthermore, Trouve-Peoux et al. proposed a general depth 
error evaluation model that adopts the sensor point spread function at a 
given depth [34]. As for the optimization of the depth map, Moller et al. 
[35] optimized the depth map with the alternate directions method of 
multipliers (ADMM) to solve the energy function. Unlike Moller, Ali et 
al. used majorize-minimization [36] and tridiagonal matrix algorithms 
[37] to solve similar energy functions, separately. However, all these 
optimization methods are too complex. Markov random field (MRF) 
modeling is also a typical approach to achieving depth map recovery 
[38–41]. All these MRF methods are developed for the optimization of 
discrete depth values. It is challenging to optimize the continuous depth 
required in measurement for solutions including graph cut [38,39] and 
the closed-form solution [41]. Sukla proposed the Gauss–MRF model 
and the gradient descent algorithm was used to solve the problem [40], 
which gave us great inspiration because the gradient descent method is 
naturally applicable to the solution of continuous values.

Our work enhances SFF 3D reconstruction for HDR freedom surfaces 
by introducing two novel contributions:

(1) We propose a more comprehensive and effective method of 
removing error points. Compared to existing methods, our method 
achieves an almost 50% increase in the removal rate of error points.

(2) We present a more efficient and robust method for filtered depth 
map restoration. Our approach outperforms traditional filters, deliver-

ing higher precision and more reasonable restoration results.

2. Methodology

The overview of our workflow is illustrated in Fig. 1. It involves 
four steps: data acquisition, shape form focus, depth map filtering, and 
depth map optimization. Firstly, we use a dual-telecentric camera to 
acquire differently focused images. Then we obtain a depth map with 
noise based on the principle of focused imaging. With a well-designed 
filtering mask, the error data can be filtered out. Finally, we optimize 
2

the depth map through MRF.
2.1. Shape from focus

Shape from focus is a technique that derives the height information 
of the measured structure based on the relationship between the focus 
and depth. The basic principle is the point spread function (PSF), as 
shown in Fig. 2(a). When imaging with an optical lens, only if the object 
distance, image distance, and focal length satisfy the relationship of 
Eq. (1), the object point can be perfectly focused as a point on the image 
plane (e.g., 𝑃 ). Otherwise, the image point will diffuse into a dispersion 
circle (e.g., 𝑃1, 𝑃2). The radius of the dispersion circle can be calculated 
with Eq. (2).

1
𝑓

= 1
𝑠
+ 1
𝑧
. (1)

𝑟 = 2𝑅𝑠
(
1
𝑓

− 1
𝑠
− 1
𝑧

)
. (2)

𝑓 denotes the focal length, 𝑧 stands for the object distance, and 𝑠
for the image distance. 𝑟 is the radius of the dispersion circle, and 𝑅 is 
the lens aperture radius. Fig. 2(b) represents the trend of the response 
intensity of the diffusion circle centers for 𝑃 , 𝑃1, and 𝑃2 with the in-

creasing axial position of the lens. When the object point is exactly in 
the focus state, the diffusion circle center has the largest contrast. The 
whole variation trend is approximate to a Gaussian distribution.

The process of SFF for 3D recovery is illustrated in Fig. 3. Once the 
image sequence is obtained, the FV can be calculated with FMO. The 
depth can be determined by fitting the focus curve.

The commonly used FMOs are Laplacian, Modified Laplacian 
(ML), Tenenbaum Focus Measure (TFM), Modified Gray level variance 
(MGLV), etc. [42,43] Here, we choose MGLV, as shown in Eq. (3). The 
window size of MGLV is set to 9*9 in the following experiments. And 
fitting methods include Gaussian fitting and polynomial fitting [44]. In 
our experiment, Gaussian fitting is taken as the fitting method.

MGLV
(
𝑥0, 𝑦0

)
= 1
𝑁 − 1

∑
𝑝(𝑥,𝑦)∈𝑈

(
𝑥0 ,𝑦0

)
(
𝑔(𝑥, 𝑦) − 𝜇𝑈

(
𝑥0 ,𝑦0

))2
, (3)

where 𝑔(𝑥, 𝑦) represents the current pixel value, 𝑈
(
𝑥0, 𝑦0

)
denotes the 

neighboring pixels of (𝑥0, 𝑦0), 𝑁 is the number of neighboring pixels, 
𝑝(𝑥, 𝑦) is the neighboring pixel value. 𝜇𝑈(

𝑥0 ,𝑦0
) means the average value 
of neighboring pixels. Since this part is not the core of this paper, we do 
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Fig. 2. The principle of SFF.

Fig. 3. The workflow of SFF.
not elaborate on it. The specific mathematical principles are detailed in 
[44,45].

2.2. Depth map filtering

In practical measurement activities, low SNR inevitably appears in 
the area where the light is shielded by the groove structure or the sur-

face with complex surface properties such as weak texture and HDR(the 
ratio between the brightest and darkest pixel values in a captured im-

age is extremely high.). Measurement errors will be introduced in the 
low SNR region, which needs to be judged and located.

If the ideal signal is defined as 𝐼(𝑥, 𝑦), then the captured signal 
𝑆(𝑥, 𝑦) can be expressed as Eq. (4), with 𝜀(𝑥, 𝑦) denoting the noise due 
to the environment and other factors.

𝑆(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) + 𝜀(𝑥, 𝑦). (4)

When the noise 𝜀(𝑥, 𝑦) is greater than the set threshold Γ, the SNR 
of the pixel at that location is determined to be too low and should be 
repaired, as in Eq. (5).

mask(𝑥, 𝑦) =
{

0 if 𝜀(𝑥, 𝑦) > Γ
1 else

, 𝑆′ = 𝑆. ∗ mask . (5)

𝑆′ is a reliable depth map with noise filtered and 𝐼 is the ideal depth 
that we need to predict based on 𝑆′.

Based on the distribution of the focus curve, we provide a summary 
of the causes for two major types of error points, as shown in Fig. 4. The 
situation in Fig. 4(a) commonly exists in the low SNR region, where the 
entire focus sequence is subject to large noise interference, resulting 
in non-Gaussian distribution. The case in Fig. 4(b) is because the fo-

cus peak deviates from the original position. Noise interference during 
imaging, abrupt changes caused by large height drops, and the effect of 
diffusion from highly reflective spots to surrounding dark spots can all 
cause a shift in the focus peak.

Consequently, we use two filtering masks in Eq. (6) to comprehen-
3

sively assess both types. One evaluates the Gaussian fitting errors to 
avoid the error in Fig. 4(a), and the other filters out the outliers caused 
by the error in Fig. 4(b).

mask(𝑥, 𝑦) = mask 1(𝑥, 𝑦) ∩ mask 2(𝑥, 𝑦). (6)

The sum of squared distances given in Eq. (7) is adopted as the 
metric to evaluate the fitting error. Then we can get the first mask, as 
expressed in Eq. (8). 𝐹 (𝑖) is the focus curve and 𝐺(𝑖) is the Gaussian fit 
curve. Γ1 is set to 12.5𝑁 in our experiments.

SSD =
∑𝑁

𝑖=1(𝐹 (𝑖) −𝐺(𝑖))2

𝑁
. (7)

mask 1(𝑥, 𝑦) =
{

0 if 𝑆𝑆𝐷 > Γ1
1 else

. (8)

The case in Fig. 4(b) is hard to judge by fitting tests, so we need 
the neighboring depth information to tell whether it is an outlier. Out-

liers can be detected with the Laplacian kernel in Eq. (9). Besides, hole 
filling of the isolated points is also required because the outliers are 
usually clusters of points. The hole filling is done by conditional dila-

tion presented in Eq. (10), where 𝐼 is the mask of isolated points, 𝑋0 is 
a zero matrix with the same size as 𝐼 , and 𝐵 is the dilation template. 
When 𝑋𝑘 =𝑋𝑘 − 1, all holes are filled and 𝑚𝑎𝑠𝑘2 =𝑋𝑘. 𝑚𝑎𝑠𝑘2 will also 
be useful in the following depth map optimization.

Laplacian =
⎡⎢⎢⎣
1 1 1
1 −8 1
1 1 1

⎤⎥⎥⎦ , (9)

𝑋𝑘 =
(
𝑋𝑘−1 ⊕𝐵

)
∩ 𝐼, 𝑘 = 1,2,3⋯ . (10)

2.3. Depth map optimization

Our optimization method is based on MRF theory. Sec. 1 has intro-

duced related studies of MRF to formulate the energy function for depth 
map optimization, so the derivation of the MRF energy function will be 

briefly described.



Optics and Lasers in Engineering 170 (2023) 107784Z. He, P. Zhou, J. Zhu et al.

Fig. 4. Fitting errors.
Considering 𝐼 as a Markov random field, according to the maximum 
a posteriori (MAP), we can deduce that

𝐼𝑀𝐴𝑃 = argmin
𝐼

{
−ln

(
𝑃
(
𝑆′ ∣ 𝐼

)
− ln(𝑃 (𝐼))

}
. (11)

In this case, prior in Eq. (11) can be factorized using the Hammersley-

Clifford theorem, and the minimum of Eq. (11) is equivalent to

𝐸(𝐼) = 𝑉 (𝐼) + 𝜆
∑
𝑛∈𝑁

𝑈𝑛(𝐼). (12)

𝐸(𝐼) is MRF energy function, 𝑉 (𝐼) is the data term, 𝑈𝑛(𝐼) means the 
smoothness term, 𝜆 is responsible for the regularization of the depth 
map estimated, and

𝑉 (𝐼) = ‖‖𝑆′ − 𝐼‖‖22 , (13)

∑
𝑛∈𝑁

𝑈𝑛(𝐼) =
∑

𝑞∈𝑁(𝑝)

(
𝜛(𝑝,𝑞)𝐼(𝑝) − 𝐼(𝑞)

)2
. (14)

‖‖𝑆′ − 𝐼‖‖22 represents the difference between observed depth 𝑆′ and 
ideal data 𝐼 . 𝑁(𝑝) is 𝑝’s first order neighborhood, and 𝜛(𝑝,𝑞) is the 
weight of different neighbors. Eq. (15) is the derivative of ∑𝑛∈𝑁 𝑈𝑛(𝐼). 
When the 𝑚𝑎𝑠𝑘 is 0, 𝑉 (𝐼) = 0, 𝐸(𝐼) =∑

𝑛∈𝑁 𝑈𝑛(𝐼). Thus the gradient of 
E(I) can be expressed by Eq. (16).

𝜏(𝑛)(𝑝) = 2𝜔(𝑝,𝑞)
[
𝐼 (𝑛)(𝑝) − 𝐼 (𝑛)(𝑞)

]
. (15)

𝑔(𝑛) = 2
(
mask . ∗

(
𝐼 (𝑛) − 𝑆′ + 𝜆𝜏(𝑛)

)
+ (1 −mask). ∗ 𝜏(𝑛)

)
. (16)

The computation of 𝜏(𝑛) equals to convolving 𝐼 (𝑛) with the kernel in 
Eq. (17).

𝜛 =
⎡⎢⎢⎣
−0.5 −1 −0.5
−1 6 −1
−0.5 −1 −0.5

⎤⎥⎥⎦ . (17)

Since randomly initialized variables may cause local non-conver-

gence, it’s necessary to update the trusted depth map and mask af-

ter each iteration of convergence. Multiple measurement experiments 
prove that global convergence can be achieved by repeating 3 times. 
The procedure of depth map optimization is outlined in Algorithm 1. 𝜆
4

is 0.2 in our experiments.
Fig. 5. Simulation configurations.

Algorithm 1 Depth map optimization with MRF.

Input: observed depth map = 𝑆′ , occlusion mask = 𝑚𝑎𝑠𝑘, tolerance = 𝜖, gradient step 
size = 𝛼, iterations = 𝑡

1: Initialization: 𝐼 (0) , 𝑖 ← 0
2: Compute 𝑔(0) based on Eq. (16)

3: repeat

4: 𝑖 ← 𝑖 + 1
5: 𝐼 (1) = 𝐼 (0) − 𝜕𝑔(0)

6: while ‖‖𝐼 (𝑛) − 𝐼 (𝑛−1)‖‖2 ≤ 𝜀 do

7: Compute 𝑔(𝑛−1) based on Eq. (16)

8: 𝐼 (𝑛) = 𝐼 (𝑛−1) − 𝜕𝑔(𝑛−1)

9: end while

10: 𝑆′ = 𝑆′ ∗ mask +𝐼 (𝑛) ∗ (1 −𝑚𝑎𝑠𝑘)
11: Update 𝑚𝑎𝑠𝑘 with Eq. (9) and Eq. (10)

12: until 𝑖 >= 𝑡

Output: 𝑆′

3. Experiments

To verify our theory, both simulation and physical experiments are 
conducted, and the following are our experimental environment and 
results.

3.1. Simulation

We establish simulation experiments by virtue of the 3D rendering 
tool Blender 3.0.0, which has been applied to generate simulation data 
because of its open source and good simulation of real scenes [46]. The 
experimental configuration is illustrated in Fig. 5. The tested sample 
is an undulating stone with deep grooves. A point light source is used 
as the illumination, and the camera is set as the orthographic mode to 
simulate a bi-telecentric imaging model. The camera aperture’s F-Stop is 
1.0 and the ratio is 1.0. The image sequence is sampled from 0.02 mm 
to 0.88 mm at an interval of 0.02 mm, and the image resolution is 
2000× 2000 pixels. To be consistent with the real environment, 1% 

random noise is added when rendering.
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Fig. 6. Different masks (a) the mask generated with Method1 [31], (b) the mask generated with Method2 [33], (c) our mask1, (d) our mask2 (Black indicates 
irrelevant or erroneous points.)

Fig. 7. Filtered depth maps (a) the original unprocessed depth map, (b) the depth map filtered by Method1 [31], (c) the filtering results of Method2 [33], (d) the 
processing results of our method.
Table 1

Accuracy of depth maps (mm).

type Unprocessed Method1 [31] Method2 [33] Ours

Valid points 92.96% 91.26% 72.75% 90.81%

Error point 6.23% 5.15% 5.53% 3.32%

Accuracy – 92.07% 74.64% 92.32%

Firstly, the accuracy of the depth map evaluation is verified. Masks 
generated by different methods are presented in Fig. 6. The recon-

structed 3D shape is visualized in Fig. 7.

It’s not difficult to find that our method not only removes the outliers 
at the edges well but also drops the cluster of error points in the central 
region, compared with Method1 [31] and Method2 [33].

In addition to qualitative experiments, we conducted quantita-

tive experiments to make our work more convincing. A deviation of 
2%(±0.172 mm) between the measurement result and the standards 
is considered as the confidence interval. The measured values falling 
within this range are considered valid data points, while any measured 
values outside this range are considered erroneous. Accuracy is defined 
as the percentage of points that are judged correctly. The comparison 
results are presented in Table 1. It can be seen that Method1 [31] fails 
to filter out all error points, while Method2 [33] performs unstably 
because the edge error is not cleanly removed, and some reliable sig-

nals are excluded. So the accuracy of our method is better than that of 
Method1 [31] and Method2 [33].

Furthermore, two error criteria, root mean square error (RMSE) and 
maximum error (ME) given in Eq. (18) and Eq. (19), respectively, were 
evaluated for the filtered and optimized depth maps, and the results are 
listed in Table 2.

𝑅𝑀𝑆𝐸 =

√√√√√ 𝑀∑(
dmap 𝑖 −𝐷𝑀𝐴𝑃

)2 ∕𝑀, (18)
5

𝑗=1
Table 2

RMSE and ME between GT and other depth maps (mm).

Error Unprocessed Method1 [31] Method2 [33] Ours

RMSE 0.0379 0.0336 0.0334 0.0156

ME 0.7884 0.7854 0.7884 0.3569

Table 3

RMSE and ME between GT and other restored depth maps (mm).

Error Unprocessed MF [47] WGIF [48] Ours

RMSE 0.0379 0.0529 0.0641 0.0273

ME 0.7884 0.7396 0.7611 0.3169

𝑀𝐸 =max
(||𝑑𝑚𝑎𝑝𝑖 −𝐷𝑀𝐴𝑃 ||) , (19)

where 𝐷𝑀𝐴𝑃 is the ground truth (GT) exported by Blender, 𝑑𝑚𝑎𝑝𝑖
means the depth map to be evaluated, and 𝑀 is the number of filtered 
points.

It is obvious from the data in Table 2 that the ME of the results of 
Method1 [31] and Method2 [33] does not differ from that of the unfil-

tered depth map, suggesting that they fail to handle the noise extremes. 
Besides, the RMSE of our method also has an advantage over them. So, 
it is sufficient to prove that our filtering method can effectively elimi-

nate the noise.

For the depth map optimization, we compared our method with the 
median filter (MF) [47] on the filtered depth map and weighted guided 
filter (WGIF) [48]. The window size of MF is the same as FMO’s win-

dow size (9*9). The guided map of WGIF is the 𝑚𝑎𝑠𝑘 we generated in 
Sec. 2.2. Fig. 8 shows the comparison of the restored depth map. Table 3

shows the RMSE and the ME result of different methods.

Based on both the visualization and quantification results, it can be 
observed that our method differs from the traditional filtering method. 

The guided map of WGIF is the mask we generated in Sec 2.2. Fig. 8
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Fig. 8. Simulation object (a) the original depth map, (b) the depth map restored with MF [47], (c) the depth map restored with WGIF [48], (d) the depth map 
restored by ours.
Fig. 9. Experimental environment.

shows the comparison of the restored depth map. Table 3 shows the 
RMSE and the ME result of different methods. Some noise at the edges 
is not perfectly filtered, which is the reason why the marginal area in 
Fig. 8(d) is not repaired effectively.

3.2. Objects’ measurement

To further support the validity of our method, we performed physi-

cal measurements with the experimental setup in Fig. 9. The measure-

ment system consists of a bi-telecentric camera, an electric translation 
stage, and diffuse illumination. The stage completes the rapid scanning 
of the tested surface while triggering the bi-telecentric camera to sample 
with constant magnification. Diffuse illumination is adopted to supple-

ment the illumination and avoid local overexposure, thereby increasing 
the captured image sequence’s signal-to-noise ratio (SNR). The electric 
translation stage is OptoSigma OSMS80-20ZF-0B with a maximum res-

olution of 0.1 μm/pulse. Daheng MER2-301-125U3M is employed for 
the camera with a double telecentric lens WWH20-110AT-G. The dou-

ble telecentric lens’ aperture (F) is 18.2 and the depth of field is 0.4. 
The captured image size is 2048× 1536 pixels.

First, we measured a set of metal blocks to quantify the performance 
of the filter. The block set consists of two stacked metal standards of 
1 mm and 3 mm, given in Fig. 10(a). Due to the large height gap 
between the two standards and the reflective properties of the metal 
6

cross-section as shown in Figs. 10(b) and (c), the highlighted or dif-
Table 4

Accuracy of depth maps (mm).

type Unprocessed Method1 [31] Method2 [33] Ours

Valid points 90.36% 90.32% 77.63% 89.02%

Error point 9.64% 9.16% 8.52% 4.01%

Accuracy 90.36% 90.80% 78.75% 94.65%

Table 5

RMSE and ME between GT and other depth maps(mm).

Error Unprocessed Method1 [31] Method2 [33] Ours

RMSE 0.2245 0.2269 0.2411 0.0906

ME 3.4000 3.4000 3.4000 2.0231

fuse edges inevitably cause troubles in the measurement. Fig. 11 shows 
the measurement and filtered results. Fig. 12 corresponds to the height 
information of the cross-section of the two standards. As can be seen, 
our method does a good job of retaining reliable results while filter-

ing out the noise at the edges. A deviation of ±0.03 mm between the 
measurement result and the standards is considered as the confidence 
interval. Accuracy results are presented in Table 4. The RMSE and ME 
of different depth maps are given in Table 5. The experimental results 
demonstrate that Method1 [31] is of little help in the removal of er-

ror points, although Method1 [31] retains the most valid points. While 
Method2 [33] improves over Method1 [31] in error points removal, 
it also filters out many valid points. Our method is slightly inferior 
to Method1 [31] in the retention of valid points but far superior to 
Method1 [31] and Method2 [33] in the removal of error points. In a 
comprehensive view, our method is more accurate than the other two 
methods.

We further tested the local topography of two mechanical watch 
movements (red-boxed area). Since both are made of metal, the HDR 
properties are evident. As shown in Fig. 13, the yellow dashed box in-

dicates the area is easily overexposed, while the red solid circle means 
it’s too dark. Fig. 14 shows masks generated by different methods for 
the two movements. Fig. 15 illustrates the shape of the recovered move-

ments and the results of the three filtering methods. The highlight and 
dark areas are disturbed by noise, yet our method can suppress the 
noise properly. The filtered depth map is restored and the comparison 
is given in Fig. 16 and Fig. 17. The lower half of each of the two figures 
corresponds to the partial enlargement of the red box. Compared with 
MF [47] and WGIF [48], our method restores depth data that is more 

natural and reasonable.
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Fig. 10. Mental standards (a) stacked standards, (b) the highlighted edge, (c) the diffuse edge.

Fig. 11. Measurement and filtering results (a) depth maps filtered, (b) the depth map filtered with Method1 [31], (c) the depth map filtered with Method2 [33], (d) 
the depth map filtered with ours.

Fig. 12. Heights of the transects, numbered as in Fig. 11.
7

Fig. 13. (a) Watch movements; the measured area is marked with red boxes, (b) movement part-1, (c) movement part-2.
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Fig. 14. Different masks for movements (a) the mask generated with Method1 [31], (b) the mask generated with Method2 [33], (c) our mask1, (d) our mask2 (Black 
indicates irrelevant or erroneous points.)

Fig. 15. Measurement and filtering results of watch movements (a) the depth map unfiltered, (b) the depth map filtered with Method1 [31], (c) the depth map 
filtered with Method2 [33], (d) the depth map filtered with ours.
Finally, we measured a more complex component, the orthodontic 
bracket. The bracket size is extremely small, as can be seen in Fig. 18. 
The complex HDR surface has deep grooves (the depth-to-width ratio 
reaches 1:2, as shown in Fig. 18(b) and (c)). Light source obstruction 
and mutual reflection greatly increase the difficulty of measurement. 
Masks for the bracket can be seen in Fig. 19. Fig. 20 shows a compari-

son of the filtered depth maps. The complex morphology and reflective 
properties of the brackets greatly affect the SNR of the depth maps, es-

pecially at the top and bottom of the bracket’s four protrusions. The 
results in Fig. 20 indicate that our method is still able to filter out noise 
as much as possible. The optimized depth map of the bracket is pre-

sented in Fig. 21, demonstrating that our method does achieve noise 
suppression and whole-field optimization.

4. Conclusions

To summarize, we improve the SFF 3D reconstruction for the free-

dom surface. Considering factors such as the complex morphological 
structure and the HDR properties, we design a more comprehensive 
8

evaluation method to reasonably screen out outliers to ensure the relia-
bility of the measured results. Moreover, the gradient descent algorithm 
is employed to solve the depth maps’ optimization function based on 
MRF, which improves the optimization speed while ensuring accuracy. 
The comparison of experimental results also proves the effectiveness 
of the proposed method. However, the filtering method is not per-

fect, the threshold value needs to be adjusted according to the actual 
measured objects. In addition, the depth map optimization objective 
function needs to be improved. The MRF objective function does not 
consider the structural information of the object, and the restoration 
is not very reasonable at locations with large height drops. Constraints 
such as the structure information of the object may be added as an 
aid.
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Fig. 16. Depth maps of watch movements-1 (a) the original depth map, (b) the depth map restored with MF [47], (c) the depth map restored with WGIF [48], (d) 
the depth map restored by ours.

Fig. 17. Depth maps of watch movements-2 (a) the original depth map, (b) the depth map restored with MF [47], (c) the depth map restored with WGIF [48], (d) 
the depth map restored by ours.
9
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Fig. 18. (a) Orthodontic bracket, (b) the depth of the bracket, (c) the scale of the bracket, (d) the image of the bracket.

Fig. 19. Different masks for the bracket (a) the mask generated with Method1 [31], (b) the mask generated with Method2 [33], (c) our mask1, (d) our mask2 (Black 
indicates irrelevant or erroneous points.)

Fig. 20. Filtered depth maps of the orthodontic bracket (a) the depth map unfiltered, (b) the depth map filtered with Method1 [31], (c) the depth map filtered with 
Method2 [33], (d) the depth map filtered with ours.
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